
Small or large home projects that usually involve setting up one system or another!

Nextcloud 15 S3 Primary Storage using Minio and Docker
Cloudflare Dynamic DNS

Home Projects

Important note before we begin: Encryption will need to be enabled if you're using

Nextcloud and S3 storage due to issues with files larger than 10mb. If you do not enable

encryption you'll get an error similar to this which I have yet to find a workaround for:

The aim of this project is to setup Nextcloud 15 inside docker using Minio as the primary storage.

For this project I'll be using my Manjaro based home computer but you can use whatever modern
Linux system you have access to.

Before you start you'll obviously need docker but you'll also need docker-compose too. I won't go into
details on how to set these up because there's a ton of guides out there which go over it in far more
detail than I'm probably able for your specific system. You can also check out the docker
documentation if you want to learn more.

After you've got docker and docker-compose setup and running we can start configuring our

Nextcloud 15 S3 Primary

Storage using Minio and

Docker

A sha256 checksum could not be calculated for the provided upload body, because it was not seekable. To prevent this error you can either 1) include the ContentMD5 or ContentSHA256 parameters with your request, 2) use a seekable stream for the body, or 3) wrap the non-seekable stream in a GuzzleHttp\Psr7\CachingStream object. You should be careful though and remember that the CachingStream utilizes PHP temp streams. This means that the stream will be temporarily stored on the local disk.

Introduction

containers.

I have a Minio container from a previous project so for this instance Minio will not be included in the
docker-compose setup file and instead will be created as a separate instance and then added to our
Nextcloud stack's network later.

I like to use bash scripts for each of my docker setups so that I can just easily run the commands
already configured in the file which comes in extremely useful if you're moving between machines or
if you don't want to have to remember how exactly you configured it. For Minio I use the following
bash script:

Minio Container

#!/bin/bash

hport=9123

name="minio"

data="/opt/minio"

image="minio/minio"

function create {

 echo "Creating..."

 sudo mkdir -p $data

 sudo docker run -d -p 127.0.0.1:$hport:9000 \

 -v $data:/data \

 -e "MINIO_ACCESS_KEY=test" \

 -e "MINIO_SECRET_KEY=testtest" \

 --restart always \

 --name $name \

 $image server /data

 echo "Running $name on host port $hport"

}

function remove {

 echo "Removing..."

 sudo docker stop $name

 sudo docker rm $name

}

This script just sticks the docker commands into a nice little wrapper that we can run to simplify the
creation and updating of the container. In this case I have set the Minio container to bind to host port
9123 and save its data in /opt/minio . I have also set the access and secret keys (which we'll need

later) as simple strings for testing purposes. If you do not have access to your /opt folder you can
simply change the directory to another path.

After you have copied and pasted the script to a file such as minio.sh , make the script executable
with chmod +x minio.sh and run ./minio.sh create . This will download all the required parts and run
the container on the configured port (9123).

Minio does have a simple web frontend that you can visit by going to http://localhost:9123 however it

function update {

 echo "Pulling..."

 sudo docker pull $image

 remove

 create

}

case "$1" in

 update)

 update

 ;;

 remove)

 remove

 ;;

 create)

 create

 ;;

 *)

 echo $"Usage $0 {update|remove|create}"

 exit 1

esac

http://localhost:9123

does not have alot of functionality and only really allows you to browse and manipulate buckets to a
small degree. This is where Minio's shell client comes in super handy.

To obtain Minio's shell client visit the link: https://docs.minio.io/docs/minio-client-complete-guide and
download the client using wget or similar then follow the instructions given. This will give you access
to the mc client.

After you've got mc downloaded and working you can stick it in your path or use it as is. By sticking it
in your path you can type mc to use it or you'll need to run it from wherever you placed it /path/to/mc
.

Next we need to add our Minio server to our mc client list which can be done with the following
command where test is the access key and testtest is the secret key as set in the Minio docker script
above.

Now that we've done that we can test it by typing mc ls minio which will list all buckets that our Minio
server contains or nothing if it is a fresh install of Minio.

Obviously we don't want to use the admin account for our Nextcloud bucket so we'll have to create a
new set of credentials.

Note: I won't go over how to set specific user-to-bucket policies so users will have access

to all buckets on the Minio server. If you do not desire this then you'll need to set a policy

for each user created.

To add a new user using mc, use the command:
mc admin user add minio nextcloud nextcloudnextcloud readwrite This will add a user (access key) called
nextcloud with the password (secret) nextcloudnextcloud with a global policy of readwrite .

We can now create a bucket for nextcloud to use: mc mb minio/nextcloud

Perfect, our Minio server is setup but we'll need to do one more thing later on to use it with our

mc config host add minio http://localhost:9123 test testtest

https://docs.minio.io/docs/minio-client-complete-guide

Nextcloud containers.

Now we need to setup our Nextcloud containers using a docker-compose file. I have opted to use
MySQL as the database just for cross-compatibility if I were to deploy this outside of my test
environment.

Note: Nextcloud using a S3 service like Minio will save the metadata of the files in the

configured database. This means that it is important to backup the database so that we

do not lose file names and any other important information. Another huge factor is that

we'll be running encryption with the keys being stored in the database too. This means

that if you lose the database, you'll lose access to your files completely.

As stated before I like to use bash scripts to store my docker setups so the wrapper script for
Nextcloud looks like this:

Nextcloud Containers

#!/bin/bash

name="nextcloud"

cdir="compose"

conf="nextcloud-docker-compose.yml"

function create {

 echo "Creating..."

 sudo docker-compose -f $cdir/$conf -p $name up -d

 echo "Running $name stack"

}

function remove {

 echo "Removing..."

 sudo docker-compose -f $cdir/$conf -p $name down

}

function update {

 echo "Pulling..."

 sudo docker-compose -f $cdir/$conf pull

 #remove

The script follows the same syntax as the Minio script above with slight differences due to using
docker compose so we need to create the missing file next.

Create the directory mkdir compose and create the config file compose/nextcloud-docker-compose.yml .

 create

}

case "$1" in

 update)

 update

 ;;

 remove)

 remove

 ;;

 create)

 create

 ;;

 *)

 echo $"Usage $0 {update|remove|create}"

 exit 1

esac

version: '2'

volumes:

 nextcloud:

 db:

services:

 db:

 image: mariadb

 restart: always

 volumes:

 - db:/var/lib/mysql

 environment:

This will create the Nextcloud containers and make the web service available on port 8483 . You may
wish to change the MySQL passwords to something more secure however this will be fine for testing
purposes.

With that done we can now as similar to before run chmod +x nextcloud.sh and create the containers
./nextcloud.sh create .

Perfect, that's done now however we have a couple of issues. Firstly networking wise our Minio
container isn't connected to our Nextcloud network and secondly, the config that allows Nextcloud to
use S3 object storage hasn't been created.

The first issue can be solved by connecting the Minio container to the Nextcloud stack's network by
running the command: docker network connect nextcloud_default minio . This will solve the networking
issue.

The second issue however is not as simple to deal with and will require a bit of tinkering with config
files inside the docker volume. This means that we need to do a somewhat annoying workaround to

 - MYSQL_ROOT_PASSWORD=wiggle

 - MYSQL_PASSWORD=wiggle

 - MYSQL_DATABASE=nextcloud

 - MYSQL_USER=nextcloud

 app:

 image: nextcloud

 ports:

 - 8483:80

 links:

 - db

 external_links:

 - minio

 volumes:

 - nextcloud:/var/www/html restart: always

Putting It All Together

generate the required configs in the first place which means we'll need to setup Nextcloud twice.

First of all navigate to http://localhost:8483 and follow the setup screen. Create a user of your choice
and password (it doesn't matter what at this stage as it'll be deleted anyway) then click the
Storage & database drop down and change hit the Mysql/MariaDB option. Fill the information with the

user and password we configured earlier.

The important thing to note here is the field (database host) which we set as db in our docker
compose file.

After the installation is complete we can move on to enabling object storage as the primary storage
for Nextcloud.

When we ran the command to create the Nextcloud containers we made two containers, in my case
those containers were called nextcloud_app_1 and nextcloud_db_1 . With their volumes called
nextcloud_db and nextcloud_nextcloud . This means that on the container host system the volume

we're after is by default under the /var/lib/docker/volumes/nextcloud_nextcloud/_data directory. This
directory will contain the Nextcloud server files.

Inside the config folder will be a config.php file. Add the following lines to the array:

Database user: nextcloud

Database password: wiggle

Database name: nextcloudlocalhost: db

...

 'objectstore' =>

 array (

 'class' => 'OC\\Files\\ObjectStore\\S3',

 'arguments' =>

 array (

 'bucket' => 'nextcloud',

 'autocreate' => false,

 'key' => 'nextcloud',

http://localhost:8483

This tells Nextcloud to use Minio as primary storage for files. An important line is the use_path_style
without which Nextcloud won't be able to connect to our Minio server without DNS configured. More
information on this can be found in the Nextcloud documentation.

Now we need to recreate Nextcloud and reinstall it with using the new config file. Change the line
'installed' => true, to 'installed' => false, inside config.php and stop the Nextcloud containers
./nextcloud.sh remove using the script we wrote earlier. Next remove the database volume
docker volume rm nextcloud_db and then recreate the containers ./nextcloud.sh create .

Navigate as previously to http://localhost:8384 and fill in the information as before, install and with a
bit of luck you'll reach a fresh Nextcl,oud instance without any error 500.

The final thing we need to do is set server side encryption to enabled so that we can upload files
larger than 10 mbs. To do this using the Nextcloud web interface, go to apps and enable the
Default encryption module then go to settings and under Administration -> Security tick the
Enable server-side-encryption checkbox .

Nextcloud is now setup to use Minio as primary storage!

 'secret' => 'nextcloudnextcloud',

 'hostname' => 'minio',

 'port' => 9000,

 'use_ssl' => false,

 'use_path_style' => true,

),

),

); //End of the array

Do you have your own domain on Cloudlfare and want to update it like you would with a dynamic DNS
service, but don't want to use said Dynamic DNS service?

Then this guide is for you!

What you'll need for these scripts to work for you:

VPS or similar sitting in the cloud or at a remote location that is running a web server and PHP.
Composer installed.
Local VPS, server or anything that runs Linux with Cron and Curl.
Already configured Cloudflare domain with a new sub domain setup for the dynamic DNS.
Redis installed.

First of all we need to grab the required API so do a composer require cloudflare/sdk

Afterwards setup the following PHP script on your server along with the vendor folder you just
downloaded.

Cloudflare Dynamic DNS

<?php

$token = $_REQUEST["token"];

if ($token != "<some random string>")

	exit("Access denied.");

require_once __DIR__ . "/vendor/autoload.php";

$redis = new Redis();

$redis->connect("127.0.0.1", "6379");

$lastIP = $redis->get("dynamic:last-ip");

if (!$lastIP) $lastIP = "";

$m = "";

$skip = false;

You will see from the script that I'm using Redis to easily identify if I've already tried updating with
the same IP address twice. This stops me flooding Cloudflare with useless requests but it can be
removed if desired.

Next up on our home server we'll make a new Cron script to call the script we just made on the
remote server. Do a crontab -e and add:

$remoteIP = $_SERVER['REMOTE_ADDR'];

if (!filter_var($remoteIP, FILTER_VALIDATE_IP)) {

	$skip = true;

	$m .= "(Remote IP invalid)";

}

if (!$skip && $lastIP != "") {

	if ($remoteIP == $lastIP) $skip = true;

	$m .= "(LastIP and RemoteIP are the same)";

}

$redis->set("dynamic:last-ip", $remoteIP);

if (!$skip) {

	$key = new Cloudflare\API\Auth\APIKey('<email>', '<cloudflare API key>');	$adapter = new

Cloudflare\API\Adapter\Guzzle($key);

	$zones = new \Cloudflare\API\Endpoints\Zones($adapter);	$zoneID = $zones->getZoneID("<root domain

name e.g example.com>");

	$dns = new \Cloudflare\API\Endpoints\DNS($adapter);	$record = $dns->getRecordID($zoneID, "A",

"<domain plus sub domain e.g: home.example.com>");

	$dns->updateRecordDetails($zoneID, $record, ["type" => "A", "name" => "<domain plus sub domain

e.g: home.example.com>", "content" => $remoteIP]);

}

if (!$skip) {

	echo "done";

}else {

	echo "Skipped: ".$m;

}

* * * * * curl -d "token=<your random string from above>" -X POST <url to the webserver running the script e.g http://example.com/api/some-script.php>

Now your DNS will be updated automagically every time it changes.

Enjoy!

