
All things Linux that don't deserve more than one page each!

X11VNC SystemD Service XUbuntu 18.04 (LightDM)
Manjaro i3 - GitKraken failing due to unset SSH_AUTH_SOCK

Short Linux Guides

Have you always wanted to remote into your Linux both with VNC on the same XServer as the
desktop is current running on? It's a common issue that most VNC software start new XSessions when
all you want to see is what is currently displaying on the screen.

That's where X11VNC comes in.

X11VNC allows you to VNC into an existing XSession so that you can see what is currently being
displayed on your Linux box's output. The only issue is that if you want the VNC server running all the
time you'll have implement your own script to start it up on boot.

Looking around I found a few guides here and there for setting X11VNC up correctly for Ubuntu 18.04
as a SystemD service however most were outdated or had annoying issues such as the SystemD unit
hanging.

Note: if you have not done so already you'll need a password for your VNC server: x11vnc -storepasswd

Using an amalgamation of knowledge from a lot of different places I came up with my own Unit script.

1. Use your favourite editor and create a new file: sudo nano /etc/systemd/system/x11vnc-h.service
(I called my service x11vnc-h just to be different from the existing script)

X11VNC SystemD Service

XUbuntu 18.04 (LightDM)

[Unit]

Description=x11vnc VNC Server for X11

Requires=lightdm.service

Now the magic here is Type=simple . This little type switch will stop the unit hanging when you go to
start it using the normal forking mode. Another useful part of the unit are the restart switches which
make sure that the VNC server is always up and restarts if it crashes.

Note: -rfbauth is the path to the VNC password file that you generated earlier.

Note: If you're an Arch user running LightDM you might not have anything inside the
/var/run/lightdm/ folder to which I have not found a fix for just yet.

Update 22/Dec/2018: On further testing the path may not exist on Manjaro / Arch based systems
correctly but the same path still seems to work.

After you've saved your unit script reload SystemD with systemctl daemon-reload and fire it up with
systemctl start x11vnc-h .

If all went well you should have an output like this: systemctl status x11vnc-h

After=lightdm.service

[Service]

Type=simpleExecStart=/usr/bin/x11vnc -auth /var/run/lightdm/root/:0 -display WAIT:0 -forever -

shared -rfbauth /home/user/.vnc/passwd -rfbport 5900

ExecStop=/usr/bin/killall x11vnc

Restart=on-failure

RestartSec=2

SuccessExitStatus=3

[Install]WantedBy=graphical.target

● x11vnc-h.service - x11vnc VNC Server for X11 Loaded: loaded (/etc/systemd/system/x11vnc-

h.service; disabled; vendor preset: enabled) Active: active (running) since Fri 2018-12-21

21:12:29 GMT; 3s ago Process: 23528 ExecStop=/usr/bin/killall x11vnc (code=exited,

status=0/SUCCESS)

 Main PID: 23530 (x11vnc)

 Tasks: 1 (limit: 4915)

 CGroup: /system.slice/x11vnc-h.service └─23530 /usr/bin/x11vnc -auth

/var/run/lightdm/root/:0 -display WAIT:0 -forever -shared -rfbauth /home/user/.vnc/passwd -

rfbport 5900

Dec 21 21:12:29 xee x11vnc[23530]: 21/12/2018 21:12:29Dec 21 21:12:29 xee x11vnc[23530]:

21/12/2018 21:12:29 initialize_screen: fb_depth/fb_bpp/fb_Bpl 24/32/2560Dec 21 21:12:29 xee

x11vnc[23530]: 21/12/2018 21:12:29Dec 21 21:12:29 xee x11vnc[23530]: 21/12/2018 21:12:29

Listening for VNC connections on TCP port 5900Dec 21 21:12:29 xee x11vnc[23530]: 21/12/2018

21:12:29 Listening for VNC connections on TCP6 port 5900Dec 21 21:12:29 xee x11vnc[23530]:

21/12/2018 21:12:29 listen6: bind: Address already in useDec 21 21:12:29 xee x11vnc[23530]:

21/12/2018 21:12:29 Not listening on IPv6 interface.Dec 21 21:12:29 xee x11vnc[23530]:

21/12/2018 21:12:29

Dec 21 21:12:29 xee x11vnc[23530]: The VNC desktop is: xee:0Dec 21 21:12:29 xee

x11vnc[23530]: PORT=5900

I came across on an annoying issue with the SSH_AUTH_SOCK variable not being set correctly on my
Manjaro i3wm work machine. This is an issue as the variable needs to be set in order to use GitKraken
properly. It turns out that the software wasn't even being correctly loaded in the first place on the
community i3 version of Manjaro probably due to the minimalist intended design so I set out to fix
that.

First of all we actually need gnome-keyring so using a terminal run pacman -S gnome-keyring to install it.

Next up we need to make some PAM changes so following this guide on the Arch Linux forums I
changed the following file:

Manjaro i3 - GitKraken failing

due to unset

SSH_AUTH_SOCK

/etc/pam.d/login

#%PAM-1.0

auth required pam_securetty.so

auth requisite pam_nologin.so

auth include system-local-loginauth optional

pam_gnome_keyring.so #<-- Add this lineaccount include system-local-login

session include system-local-login

session optional pam_gnome_keyring.so auto_start #<-- Add this line

https://wiki.archlinux.org/index.php/GNOME/Keyring#PAM_method

The two important lines highlighted in the file load the gnome keyring pam libraries.

Next we need to add a few lines to the .xinitrc file which can be found in your user's home.

The lines between the dots are added just after the get_session() function but before the exec call to
start i3wm. An extra line is also needed in the form of a dbus-update call for i3wm specific reasoning.

After that is sorted we need to add a few lines to the Bash .profile file in order to export the variable
for Bash sessions.

At the bottom of the file add the above 5 lines which makes sure that the keyring daemon is actually
running and exports the variable we require for GitKraken (and various other programs).

You can now safely restart the system or logout and back in again to load everything up and we
should be good to go. We can of course test this by echoing out the variable in the terminal like so:

/home/user/.xinitrc

get_session(){

... bla ...

}

...

Start Gnome keyring

dbus-update-activation-environment --systemd DISPLAYeval $(/usr/bin/gnome-keyring-daemon --

start --components=pkcs11,secrets,ssh)

export SSH_AUTH_SOCK

...# exec ...

/home/user/.profile

At the bottom of the file

...

Start gnome ssh keyring daemon

if [-n "$DESKTOP_SESSION"];then eval $(/usr/bin/gnome-keyring-daemon --start --

components=pkcs11,secrets,ssh)

 export SSH_AUTH_SOCKfi°

[user@machine ~]$ echo $SSH_AUTH_SOCK/run/user/1000/keyring/ssh

